Friday, March 4, 2016

Calculus Early Transcendentals Single Variable 9th Edition by Howard Anton

 

Download ebook Calculus Early Transcendentals Single Variable 9th Edition by Howard Anton

download-ebook-Calculus-9th-Edition-by-Howard-Anton
download-ebook-Calculus-9th-Edition-by-Howard-Anton

Designed for the undergraduate Calculus I-II-III sequence, Calculus, 9e continues to evolve to fulfill the needs of a changing market by providing flexible solutions to teaching and learning needs of all kinds. The new ninth edition of Calculus Early Transcendentals Single Variable retains the strengths of earlier editions such as Antons trademark clarity of exposition, sound mathematics, excellent exercises and examples, and appropriate level. Anton also incorporates new ideas that have withstood the objective scrutiny of many skilled and thoughtful instructors and their students. 

Table of Contents

Chapter 0 Before Calculus
0.1 Functions
0.2 New Functions from Old
0.4 Families of Functions
0.5 Inverse Functions; Inverse Trigonometric Functions
0.6 Exponential and Logarithmic Functions
Chapter 1 Limits and Continuity
1.1 Limits (An Intuitive Approach)
1.2 Computing Limits
1.3 Limits at Infinity; End Behavior of a Function
1.4 Limits (Discussed More Rigorously)
1.5 Continuity
1.6 Continuity of Trigonometric, Exponential, and Inverse Functions

Chapter 2 The Derivative
2.1 Tangent Lines and Rates of Change
2.2 The Derivative Function
2.3 Introduction to Techniques of Differentiation
2.4 The Product and Quotient Rules
2.5 Derivatives of Trigonometric Functions
2.6 The Chain Rule

Chapter 3 Topics in Differentiation
3.1 Implicit Differentiation
3.2 Derivatives of Logarithmic Functions
3.3 Derivatives of Exponential and Inverse Trigonometric Functions
3.4 Related Rates
3.5 Local Linear Approximation; Differentials
3.6 LHôpitals Rule; Indeterminate Forms

Chapter 4 The Derivative in Graphing and Applications
4.1 Analysis of Functions I: Increase, Decrease, and Concavity
4.2 Analysis of Functions II: Relative Extrema; Graphing Polynomials
4.3 Analysis of Functions III: Rational Functions, Cusps, and Vertical Tangents
4.4 Absolute Maxima and Minima
4.5 Applied Maximum and Minimum Problems
4.6 Rectilinear Motion
4.7 Newtons Method
4.8 Rolles Theorem; Mean-Value Theorem

Chapter 5 Integration
5.1 An Overview of the Area Problem
5.2 The Indefinite Integral
5.3 Integration by Substitution
5.4 The Definition of Area as a Limit; Sigma Notation
5.5 The Definite Integral
5.6 The Fundamental Theorem of Calculus
5.7 Rectilinear Motion Revisited Using Integration
5.8 Average Value of a Function and its Applications
5.9 Evaluating Definite Integrals by Substitution
5.10 Logarithmic and Other Functions Defined by Integrals

Chapter 6 Applications of the Definite Integral in Geometry, Science, and Engineering
6.1 Area Between Two Curves
6.2 Volumes by Slicing; Disks and Washers
6.3 Volumes by Cylindrical Shells
6.4 Length of a Plane Curve
6.5 Area of a Surface of Revolution
6.6 Work
6.7 Moments, Centers of Gravity, and Centroids
6.8 Fluid Pressure and Force
6.9 Hyperbolic Functions and Hanging Cables

Ch 7  Principles of Integral Evaluation
7.1 An Overview of Integration Methods
7.2 Integration by Parts
7.3 Integrating Trigonometric Functions
7.4 Trigonometric Substitutions
7.5 Integrating Rational Functions by Partial Fractions
7.6 Using Computer Algebra Systems and Tables of Integrals
7.7 Numerical Integration; Simpsons Rule
7.8 Improper Integrals

Ch 8  Mathematical Modeling with Differential Equations
8.1 Modeling with Differential Equations
8,2 Separation of Variables
8.3 Slope Fields; Eulers Method
8.4 First-Order Differential Equations and Applications

Ch 9  Infinite Series
9.1 Sequences
9.2 Monotone Sequences
9.3 Infinite Series
9.4 Convergence Tests
9.5 The Comparison, Ratio, and Root Tests
9.6 Alternating Series; Absolute and Conditional Convergence
9.7 Maclaurin and Taylor Polynomials
9.8 Maclaurin and Taylor Series; Power Series
9.9 Convergence of Taylor Series
9.10 Differentiating and Integrating Power Series; Modeling with Taylor Series


Ch 10  Parametric and Polar Curves; Conic Sections
10.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves
10.2 Polar Coordinates
10.3 Tangent Lines, Arc Length, and Area for Polar Curves
10.4 Conic Sections
10.5 Rotation of Axes; Second-Degree Equations
10.6 Conic Sections in Polar Coordinates 


download-ebook-Calculus-9th-Edition-by-Howard-Anton
download-ebook-Calculus-9th-Edition-by-Howard-Anton

download-ebook-Calculus-9th-Edition-by-Howard-Anton
sample-page-download-ebook-Calculus-9th-Edition-by-Howard-Anton

download-ebook-Calculus-9th-Edition-by-Howard-Anton
sample-page-download-ebook-Calculus-9th-Edition-by-Howard-Anton



                           Download This Book for Free